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Abstract 
 

Technological investments made by speed-sensitive market participants are increasingly 
frequent and have thus been a focal point of recent research. We examine an important, but 
unexplored facet of this trend: the technological disparity between the fastest market 
participants and the exchange itself. Using a proprietary dataset of a high-frequency market 
maker’s limit orders and order acknowledgments timestamped to the nanosecond, we explore 
the consistency and reliability of an exchange’s ability to discern the correct sequence of orders 
when messages are submitted in rapid (sub-microsecond) succession. We find a high degree of 
variability in acknowledgment times, and the proportion of times in which the first order 
entered is also first to be acknowledged is surprisingly low when consecutive orders are placed 
at very high frequencies. Furthermore, we provide evidence of impaired market quality as a 
result. These issues remain pertinent even following substantial technological improvements 
made by the exchange, because of the ongoing technological disparity between the exchange 
and the fastest market participants, who continue to competitively invest in technological 
improvements. 
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1. Introduction  

Technological innovations have dramatically transformed the landscape of equity trading in the last 

decade, engaging academics and regulators alike. Given the ever-increasing speed at which high-

frequency traders (HFTs) and liquidity providers are able to submit orders, numerous studies have 

naturally explored the direct ramifications and externalities arising from the speed-arms race among 

market participants. However, a particularly prominent yet unattended issue in this high-frequency era 

concerns not only the differing speeds among high-frequency players but also the technological 

disparity between the exchange itself and its fastest market participants. That is, although exchanges 

are financially motivated to reduce latency (Li, Ye, and Zheng, 2023), an exchange’s infrastructure in 

place may not be able to keep up with the increasing frequency at which orders are submitted. 

For the speed-sensitive liquidity provider, one critical consideration in providing immediacy is 

predicated on the important assumption that a given exchange or trading venue can correctly 

acknowledge orders in a timely and methodical fashion. Specifically, in a continuous market based on 

price-time priority, limit orders of the same price should be ranked (and filled) based on the time at 

which they are submitted. However, software architectures that achieved adequate levels of 

performance in a less competitive era now appear to induce randomness to what should ideally be a 

deterministic process of acknowledging orders in the same sequence in which they are sent. Thus, a 

natural and highly important question arises as to (i) whether, empirically, time priority is being 

violated and (ii) whether there are negative consequences for other participants in the trading 

ecosystem as a result. Our purpose is to document this heretofore unexplored phenomena and to 

provide evidence of the resulting market externalities. 

Using a proprietary dataset of a specific high-frequency market maker’s limit orders and 

acknowledgements, which are timestamped to the nanosecond, we are able to first document this timely 

and important issue regarding the consistency and reliability of an exchange’s ability to acknowledge 

and correctly rank orders in practice. Because we definitively know the sequence in which we place 
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orders from our own co-located, dedicated OUCH ports, we can track how often the orders placed first 

are actually first to be acknowledged and queued by the exchange. 

We find that when orders are placed in rapid succession, the proportion of orders placed first 

that are also first to be acknowledged (i.e., the FIFO ratio) can be surprisingly low depending on the 

time deltas we allow between consecutive messages. For instance, when consecutive orders are placed 

at least 16 microseconds (µs) apart in time, 99% of orders sent first are also first to be acknowledged 

and queued. However, at lower latencies of less than one microsecond (µs) between orders, only half 

of the orders sent first are also first to be acknowledged (i.e., the FIFO ratio is 59%). Interestingly, we 

observe that the FIFO ratio for time deltas of two µs improves significantly after a major technological 

overhaul by the exchange,1 but the FIFO ratio for time deltas of one µs remains dismally low. That is, 

our evidence suggests that technological disparity persists between the exchange and its fastest 

participants, who continue to outpace the exchange as they competitively invest in technological 

improvements.  This ongoing disparity, in turn, perpetuates queuing uncertainty and randomness in 

time priority for high-frequency liquidity providers and hence, increases their risks and costs of 

providing immediacy to other market participants. 

To examine potential market externalities arising from this phenomenon, we begin by 

exploring the implications for perceived liquidity/depth in the limit-order book, specifically as it 

pertains to excess messaging and rapid order cancellations. That is, liquidity providers must race for 

queue position to add liquidity to the continuously evolving limit-order book upon each new price 

formation. With the added uncertainty arising from queuing uncertainty and violations in price-time 

priority, we expect liquidity providers to strategically submit orders in excess of the liquidity they 

actually intend to provide at a given price level, since (in the continuous market) they can rapidly 

                                                           
1 Specifically, we leverage the launch of the Nasdaq Financial Framework (NFF) on May 26, 2016. See Nasdaq Press 
Release accessed on <https://www.nasdaq.com/about/press-center/nasdaq-debuts-groundbreaking-nasdaq-financial-
framework-enhancing-operations>. 

https://www.nasdaq.com/about/press-center/nasdaq-debuts-groundbreaking-nasdaq-financial-framework-enhancing-operations
https://www.nasdaq.com/about/press-center/nasdaq-debuts-groundbreaking-nasdaq-financial-framework-enhancing-operations
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cancel a number of these orders once their respective queue positions in the limit-order book have been 

assigned.  

Focusing on time deltas of one µs between consecutive orders, which proxies for the ongoing 

technological disparity between market participants and the exchange for our sample period, we find 

that the FIFO ratio is a substantial predictor of the percentage of rapid-fire order cancellations. For 

instance, an increase in the FIFO ratio from 60% to 90% is associated with a 1.81% decline in order 

cancellations occurring within 50 μs of a price-formation speed race to add liquidity, which represents 

a 9.64 percent decline from the average rapid-fire order cancellations of 18.78%. Similarly, we find 

that an increase in the FIFO ratio is associated with a significant decline in the ratio of the total quantity 

of shares placed at the onset of a new price-formation relative to the quantity of shares available 

halfway throughout the life of a newly established price level. Overall, the excess messaging in 

response to queueing uncertainty persists even after a major technological upgrade by the exchange, 

suggesting that the exchange has not contemporaneously matched the latest technological 

improvements made by its fastest market participants. 

Given that liquidity providers in the continuous market can mitigate the consequences they 

face from queuing uncertainty (i.e., through excess messaging and subsequent order cancellations), we 

now turn to explore whether this uncertainty has palpable ramifications on other market participants 

outside of the fastest, first-in-line liquidity providers who directly experience the costs. A particularly 

risky but potentially lucrative time for liquidity providers on Nasdaq falls within the last ten minutes 

of the trading day, wherein the closing cross is held alongside the continuous market. During this ten-

minute period, the closing-cross active interest alerts market participants to the evolving demand for 

liquidity at the close (i.e., the liquidity-seeking on-close orders to buy or sell a particular security at 

the official closing price of the day). In response, liquidity providers can enter Imbalance Only (IO) 

orders, which is a type of limit order that offsets the unmatched on-close orders placed by other market 

participants. Given that the closing cross is an important market mechanism that sets the daily Nasdaq 
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Official Closing Price (NOCP) for each security, the resulting demand to purchase or sell shares at the 

NOCP provides a potentially substantial reward to liquidity providers who are first in line with their 

IO orders. 

However, in contrast to orders placed in the continuous market, liquidity providers cannot 

cancel their IO orders once placed after 3:50 PM ET, and moreover, do not see their queue position in 

the closing cross until settlement at 4:00 PM ET. Thus, liquidity providers are faced with additional 

risks when participating in the closing cross due to the uncertainty regarding the extent to which they 

should pre-emptively accumulate an offsetting position in the final minutes of the continuous market. 

That is, if a liquidity provider intends to absorb an on-close buy imbalance, then he/she would ideally 

accumulate an offsetting position by purchasing shares or otherwise creating an offsetting hedge prior 

to the end of the trading day. If, after these efforts, his/her IO order is ultimately left unfilled, then 

he/she is forced to hold inventory overnight and is subject to overnight price volatility. 

To complicate matters, the fastest liquidity providers are unable to iteratively learn their 

predictive fill rates relative to their high-frequency competitors, if the queueing uncertainty they face 

arises from the exchange’s technological inability to consistently acknowledge and queue orders in the 

correct sequence (rather than from uncertainty as to how fast other players are). As a result, the 

uncertainty and risks faced by liquidity providers who place IO orders in the closing cross are greatly 

exacerbated by randomness in time priority, because the market features of the closing cross preclude 

liquidity providers from engaging in the excess messaging and rapid-fire cancellations they employ in 

the face of queuing uncertainty in the continuous market. Thus, a natural question arises as to whether 

greater randomness in time priority results in more on-close orders being left unfilled.  

We find that the aggregate end-of-day order imbalance (i.e., the percentage of unabsorbed on-

close orders at the end of the trading day) and the number of tickers with unabsorbed on-close orders 

has increased substantially over time. Interestingly, after accounting for other fundamental factors 

contributing to order imbalance, we find that the FIFO ratio is a substantial predictor of the unabsorbed 
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imbalance at market close. For instance, an increase in the FIFO ratio from 60% to 90% is associated 

with a 0.345% decline in aggregate order imbalance, which represents a 35.9 percent decline from the 

average market-wide percentage order imbalance of 0.96%. Moreover, we observe that smaller-cap 

stocks, which are inherently more difficult to hedge in after-hours trading, suffer disproportionately 

relative to large-cap stocks. That is, a similar increase in the FIFO ratio is associated with a 1.21% 

decline in the aggregate order imbalance of stocks outside of the top quintile with respect to market 

capitalization. These results suggest that greater uncertainty surrounding whether IO orders will be 

acknowledged in the correct sequence in which they are placed makes liquidity providers more 

reluctant to submit IO orders in the first place.  

Overall, our paper is the first to provide evidence of a heretofore unexplored byproduct of 

disproportionate technological advances made by market participants versus those made by the 

exchange, leading to ever lower latencies in equity trading that cannot be appropriately distinguished. 

Because this aspect of queuing uncertainty arises from the technological disparity between the 

exchange and the fastest market participants, it is not something that can be alleviated unless the 

exchange contemporaneously matches the pace of technological improvements made by market 

participants. Moreover, we provide evidence that this other (and more harmful) cause of queuing 

uncertainty that arises from violations in price/time priority has greater implications for market 

liquidity and daily market clearing. This aspect of queuing uncertainty is critical to ongoing discussions 

pertaining to optimal market design, as it will persist as long as the fastest market participants not only 

outpace other participants but also outpace the capability of the exchange to distinguish who is faster. 

This paper is organized as follows. In Section 2, we provide a literature review along with an 

overview of the relevant technical details of modern market structure. In Section 3, we describe the 

data and methodology, and we provide summary statistics. In Section 4, we present the empirical 

analyses as to the FIFO ratio and aspects of market quality. In Section 5, we discuss potential solutions 

and policy implications, and in Section 6, we provide concluding remarks. 
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2. Background on Market Structure: Literature Review and Technical Details 

In this section, we begin with a review of prior work studying market quality and structure in a high-

frequency era. We then provide an overview of technical details pertaining to market design, 

specifically as it pertains to differences between the continuous market and closing cross, as well as 

details regarding an exchange’s technological structure. 

 

2.1 Literature Review 

The Securities and Exchange Commission (SEC) has identified high frequency trading as “one of the 

most significant market structure developments in recent years”,2 citing estimates that more than half 

of total trading volume is attributable to high frequency trades. For reference, each trading day presents 

at least 8 million speed races to market participants, who seek to either take liquidity, provide liquidity, 

or cancel posted orders throughout the day. To win these speed races, rapid advances in technology 

have dramatically increased the rate at which both liquidity providers and liquidity takers (i.e., traders) 

can enter orders, with consecutive orders oftentimes placed microseconds, and now, even nanoseconds 

apart.  Accordingly, a plethora of work has emerged to study the ramifications and potential policy 

implications arising from the ascent of high frequency trading and the speed-arms race among market 

participants. 3 

On one hand, many studies have identified negative externalities from increasing HFT 

activity.4 For instance, HFTs can create mispricing that disadvantages ordinary investors (Jarrow and 

Protter, 2012), and a HFT’s ability to gain advance access to information imposes adverse selection 

costs on other slower market participants (Biais, Foucault, and Moinas, 2015). Theoretical models also 

                                                           
2 See the Securities and Exchange Commission’s Concept Release on Equity Market Structure (17 CFR Part 242), 
released on Thursday, January 21, 2010.  
3 See Biais and Foucault (2014) and O’Hara (2015) for an overview of issues arising with the advent of high frequency 
traders (HFTs). 
4 Note, however, that liquidity measurement problems arising from HFT activity can materially affect inferences 
drawn from empirical work (Holden and Jacobsen, 2014). 
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demonstrate that increased speed by HFTs can lead to lower information production and price 

informativeness (Baldauf and Mollner, 2020; Huang and Yueshen, 2021). Moreover, the rise of high-

frequency trading may adversely impact liquidity for other players, as suggested by the decline in the 

consolidated depth across trading venues associated with a greater presence of HFTs (Kervel, 2015) 

and the lower adverse selection and trading costs associated with exogenous disruptions to traders’ 

speed advantages (Shkilko and Sokolov, 2020). Overall, competition for queue position encourages 

the high-frequency arms race (Yao and Ye, 2018), and generally, there appears to be an overall 

“socially excessive” investment in speed (Hoffmann, 2014; Biais, Foucault, and Moinas, 2015).  

On the other hand, studies have also found positive ramifications. For instance, Brogaard, 

Hendershott, and Riordan (2014) provide evidence that HFTs improve price discovery and market 

efficiency, and Conrad, Wahal, and Xiang (2015) provide evidence that high-frequency quotation leads 

to lower trading costs and price paths that better resemble a random walk. Similarly, studies on 

colocation services provided by exchanges, which further reduce latency, provide evidence of lower 

spreads (Boehmer, Fong, and Wu, 2015; Frino, Mollica, and Webb, 2014) and increased overall 

liquidity (Brogaard, Hagströmer, Nordén, and Riorda, 2015) once colocation services are introduced. 

Consistent with these empirical observations, Foucault, Hombert, and Roşu (2016) present a model in 

which HFTs not only contribute to short term increases in trading volume but also long-term price 

discovery.  

Finally, in contrast to the studies examining the impact of accelerated technological upgrades 

made by market participants, others have focused on the impact of technological upgrades made by the 

exchange itself. Riordan and Storkenmaier (2012) provide evidence that an exchange’s technological 

upgrades to increase speed led to reduced quoted spreads and enhanced price discovery, and Kemme, 

McInish, and Zhang (2022) provide evidence that an exchange’s speed improvements additionally led 

to less manipulative trading behavior. Similarly, Pagnotta and Philippon (2018) theoretically model 

the impact of competition among trading venues to attract traders, finding that imposing a minimum 
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speed requirement across venues reduces market-wide inefficiencies whereas imposing a maximum 

speed requirement does not. Moreover, Li, Ye, and Zheng (2023) provide evidence that slower 

exchanges are more costly to traders and provide worse execution, which in turn disincentivizes 

exchanges from slowing down trades.  

Overall, though, amidst discussions of optimal market design in a high-frequency world and 

the purported impact of a technological arms race, the potential mismatch in technological capabilities 

between the exchange and its high-frequency market participants (and the ensuing market externalities) 

has, heretofore, remained empirically unattended. Studies thus far take for granted that queuing 

uncertainty is an unavoidable consequence of technological advances and market design (e.g., 

Yueshen, 2014; Budish, Cramton, and Shim, 2015). That is, these studies assume that multiple traders 

react simultaneously to new information, and thus are prioritized randomly by the exchange, which 

cannot process messages simultaneously. However, in reality, orders are virtually impossible to be 

placed simultaneously. Rather, the speed at which high-frequency traders react to new information has 

dramatically accelerated over time, which renders outdated technology unable to discern the fine but 

distinctive difference in origination times between orders placed just nanoseconds apart. 

Thus, in stark contrast to prior literature in this space, our focus is to: (i) provide evidence of 

ongoing technological disparity between an exchange and its market participants using proprietary data 

from a high-frequency market maker, and (ii) provide suggestive evidence of the resulting impairment 

in market quality. Along this regard, Menkveld and Zoican (2017) is the closest paper to ours as it 

theoretically derives how exchange speed affects market quality through the actions of high-frequency 

market participants. In particular, the authors demonstrate that a faster exchange, in certain cases, might 

not lead to better liquidity. Our paper bridges an important gap by empirically documenting metrics 

that are indicative of the technological disparity that persists between an exchange and its market 

participants even following substantial speed improvements made by the exchange. 
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2.2. Overview of Market Design: Distinctions between the Continuous Market and Closing Cross 

In this section, we provide critical details in an exchange’s market design to highlight key features 

contributing to the various risks faced by liquidity providers, which in turn, result in less liquidity for 

other market participants. Consistent with our data (presented in Section 3) and empirical analyses 

(presented in Section 4), we focus on the specifics of the National Association of Securities Dealer 

Automated Quotations Sock Market, often simply referred to as NASDAQ or Nasdaq. 

 In the continuous market, often simply referred to as “the stock market,” trading hours run 

from 9:30 AM to 4:00 PM Eastern Time on Monday through Friday, except on specially designated 

holidays and half days. Liquidity providers have the flexibility to continuously add and remove quotes 

from the central limit order book throughout the trading day. Furthermore, by subscribing to the Nasdaq 

TotalView-ITCH data feed, liquidity providers see the evolving limit order book and trade executions 

continuously throughout the trading day. Importantly, in the continuous market, liquidity providers 

also continuously learn their queue positions (typically within 43 μs during our sample period) on 

orders submitted throughout the trading day and are free to cancel orders upon receiving the order 

acknowledgement. Thus, in the continuous market, liquidity providers can strategically place more 

limit orders than they plan to fulfill, since they have an easy way to mitigate the risks born from 

queueing uncertainty. 

On the other hand, the closing cross, which occurs alongside the continuous market during the 

last ten minutes of the trading day from 3:50 PM to 4:00 PM Eastern Time, is a specific market setting 

that determines the Nasdaq Official Closing Price (NOCP) each day for each Nasdaq-listed security. 

For reference, a security’s daily closing price is used as the reference price for determining index 

valuations, net asset values (NAVs) for funds, to mark brokerage accounts, and to determine account 

margins. Thus, the closing cross represents a critical market mechanism in which a substantial portion 
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of daily volume occurs,5 providing a potentially lucrative but particularly risky opportunity for 

liquidity providers.  

Because the on-close demand to buy versus sell shares of a particular security results in either 

a buy-side or sell-side order imbalance, liquidity providers can respond to the unmet demand for 

liquidity at the close by entering Imbalance Only (IO) orders, which is a type of limit order that offsets 

the unabsorbed on-close orders placed by liquidity-seeking market participants. To facilitate this 

process, the closing-cross active interest is disseminated every five seconds, between 3:50 and 4:00 

PM Eastern Time, in the form of Net Order Imbalance Indicator (NOII) messages.6 

However, in stark contrast to orders placed in the continuous market, where liquidity providers 

learn their queue positions and can cancel orders accordingly, IO orders placed in the closing cross 

cannot be canceled and queue positions are not revealed until settlement at 4:00 PM Eastern Time. 

That is, in the closing cross, liquidity providers are unable to employ their self-protective strategy of 

excess messaging followed by rapid order cancellations. Thus, a natural question arises as to whether 

greater randomness in time priority due to technological disparity causes liquidity providers to be less 

willing to absorb on-close market demand. 

The risks to liquidity providers arising from queuing uncertainty are particularly pronounced 

in the closing cross, because they are forced to hold an unexpected position overnight if an IO order is 

ultimately left unfilled at the close. For instance, if a liquidity provider intends to absorb an on-close 

buy imbalance, then he/she will pre-emptively accumulate an offsetting position by purchasing shares 

or otherwise creating an offsetting hedge in the final minutes of the continuous market. If his/her IO 

order is ultimately left unfilled, then he/she is forced to hold inventory overnight and is subject to 

                                                           
5 For instance, in the first quarter of 2017, the average volume demanded at the close was approximately 40,000 shares 
per ticker, and the average proportion of total daily volume filled at the close was 4.2 percent. 
6 The timing of messages has since changed, with NOII information now being broadcasted every 10 seconds from 
3:50 to 3:55 PM ET then every second from 3:55 to 4:00 PM ET. Thus, we expect a greater incidence of concentrated 
IO orders to occur in the recent period over the last five minutes of the closing cross. 



 

 11 

overnight price volatility. This risk is particularly magnified when a speed-sensitive liquidity provider 

encounters randomness in time priority, which creates difficulties in learning his/her predictive fill rate 

relative to other liquidity providers.  

 

2.3. Overview of Market Design: Opting for a Continuous Versus Discretized Market 

Recent studies have questioned the merits of keeping a continuous market design in a high-frequency 

world, advocating instead that orders be processed batch by batch at larger time intervals. That is, to 

reduce the ever-increasing investments for seemingly marginal improvements in speed and to attenuate 

the asymmetry arising from these sub-microsecond-level differences in speed across players, one 

advocated solution is to treat all orders arriving within the same discrete-time bucket equally with 

respect to time priority (see, for instance, Budish, Cramton, and Shim, 2015). However, under this 

discretized market design, traders have no incentive to submit new orders or to withdraw older ones at 

the beginning of the trading interval, since all orders of the same price receive equal priority as long as 

they are placed within the same time bucket, ( 𝑇𝑇𝑖𝑖  , 𝑇𝑇𝑖𝑖 + ℎ]. As a result, although frequent batch 

auctions prevent an arms race to be first, they instead promote a reverse race to be last (i.e., as feasibly 

close to 𝑇𝑇𝑖𝑖 + ℎ), since traders prefer to process as much information as possible prior to submitting or 

canceling orders.7  

Ultimately, this critical time period within the batch interval will be determined by the 

technological capabilities of the traders, which continues to encourage investments in speed since the 

fastest traders will be able to execute orders closest to 𝑇𝑇𝑖𝑖 + ℎ. That is, faster traders will have a greater 

information set on which to base their orders for a given trading interval i than slower traders who are 

forced to execute orders earlier in the trading interval. Moreover, faster traders will still be able to 

                                                           
7 See, for instance, Haas and Zoican (2016). We note that, even in a discretized market design, technological disparity 
poses an issue, if the exchange is incapable of distinguishing which orders were placed sub-microseconds prior to the 
end of each interval. 



 

 12 

“snipe” stale quotes from slower traders who are unable to cancel a quote based on information that is 

received too close to 𝑇𝑇𝑖𝑖 + ℎ. Thus, frequent batch auctions are unlikely to attenuate issues of adverse 

selection or “excessive” investment in speed, since information still arrives continuously rather than in 

discrete intervals, and the high-frequency arms race remains irrespective of whether an exchange 

chooses a continuous or discretized market design. Overall, discretized markets are not immune to 

problems arising from technological disparity between the exchange and its fastest players. 

 

2.4. Overview of Design Topology: Technical Details Regarding Order Gateways and Matching 

Engines 

The preferred structural design used by the U.S. equities markets, including Nasdaq, is a hub-and-

spoke architecture, where the matching engine sits at the center of equidistant gateways which manage 

individual customer connections.  The matching engine is responsible for keeping track of limit orders 

to buy and sell each stock and matches them against orders priced at a market (or marketable) price. 

The activity going through the matching engine is tracked for clearing and settlement purposes. The 

exchange also provides a summary of market activity in the form of market data for all participants to 

use in real time. 

Order gateways manage individual client sessions. Each gateway has multiple order ports, and, 

in turn, order ports are assigned to clients for their use in managing communication with the exchange.  

The order ports allow clients to send outbound messages to the exchange, such as add-order requests 

or cancel-order requests.  The ports also provide communication from exchanges in the form of order 

acknowledgements, order rejections, cancel confirmations, and executions.  Exchanges perform checks 

on their gateways to ensure that incoming messages are properly formed.  The gateway also throttles 

messages as necessary by either outright rejecting or decreasing the pace of orders when message rates 
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exceed pre-determined thresholds, and passes on properly formed (i.e., compliant) orders to the 

matching engine as it receives them.  

This design topology presents two important benefits: the distributed architecture is both (i) 

reliable, and (ii) highly scalable.  As the number of symbols or message traffic increases, an exchange 

can add gateways and/or matching engines as necessary. Thus, if one gateway fails, clients can migrate 

to an alternate gateway.  Exchanges also have disaster recovery plans which allow them to switch 

market activity to a backup facility located a significant distance away from their primary trading 

location. 

However, despite its distributed nature, a significant problem remains in this architectural 

design, whereby multiple locations where messages can encounter a bottleneck in processing.  As these 

queues lengthen, the processing time for each order increases and the client experience departs from 

the ex-ante expectation of the price-time priority that should be honored in an ideal (i.e., first come, 

first serve) setup. For instance, consider a situation in which a single client places an order to a port on 

a gateway server. The gateway checks the order and passes it on to the exchange’s matching engine, 

which in turn responds with an order acknowledgement for a seamlessly executed roundtrip of order 

placement to acceptance. In contrast, consider a speed race in which multiple clients rapidly send 

orders, causing congestion at the gateway’s outbound network connection to the exchange’s matching 

engine. As a result, a queue forms at the incoming matching engine connection, and orders may no 

longer be acknowledged by the matching engine in the sequence in which they were placed.  

 

2.5. A Tale of Two Olympians: “FIFO” in a competitive sports setting 

We close out this section with an analogy whereby the 100M race at the Olympics corresponds to a 

speed race on an exchange, the Olympic referees represent the exchange’s gateways and matching 

engine, and the fastest swimmers correspond to high-frequency market participants. That is, the 
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referees employ stopwatches/cameras to rank swimmers, which represent the technology employed by 

an exchange to accept and queue orders.  

Much like the competition among high-frequency liquidity providers has led to ever decreasing 

time deltas between orders, the competition between Olympic swimmers has led to vast technological 

improvements in suits, training, and dietary plans in order to shave off fractions of seconds in 

performance times. However, if the quality of the stopwatch/camera is insufficient to differentiate 

performance times with very small time deltas, the faster swimmer may not be appropriately 

recognized as such. In other words, the rank ordering of swimmers could be different from the true 

order at which they finish if their time deltas are too fine to be properly captured by less sophisticated 

stopwatches and cameras with lower frame rates. In these circumstances, trying to reverse-engineer 

capabilities based on reported performances times could mislead the strategic planning of athletes and 

their trainers for subsequent competitions. Below is an excerpt from an article regarding poor FIFO 

ratios in the 1960 Olympics: 

 

“Watches capable of discerning hundredths of a second were in regular use in the 

Olympics by 1948. But what good is such refinement if, when an athlete crosses the 

finish line, the judge drops a tenth of a second or more merely clicking the stopwatch? 

(Human thought takes time to propagate and enact, too.) The weakness of this link 

became terribly apparent during the 1960 Summer Olympics, in Rome, when two 

swimmers, the American Lance Larson and the Australian John Devitt, seemingly tied 

in the hundred-metre freestyle. A half-dozen judges, peering through the waves at the 

finish, reached a stalemate: three declared Larson the winner, the other three Devitt. 

Though Omega’s stopwatches indicated that Larson had the faster time, by at least a 

tenth of a second, a referee broke the tie and awarded Devitt gold.” (Burdick, 2018) 
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3. Data 

In this section, we describe our main empirical metrics and data sources. Appendix A1 provides a 

comprehensive and consolidated account of all variables and corresponding sources. 

 

3.1. Sources 

Our sample consists of 3,740 unique tickers and spans the first trading day of January 2014 through 

the last trading day of April 2017, which totals 2,911,692 ticker-days. We obtain time-stamped orders 

and acknowledgements from a proprietary dataset created and culled with a specific high-frequency 

market maker on Nasdaq -- which we describe in further detail below -- to calculate order-to-accept 

latencies and, ultimately, the first-in-first-out ratio of orders submitted in rapid succession.   

We augment our proprietary dataset with the raw exchange data feed from Nasdaq (i.e., 

TotalView–ITCH), which provides the entire evolving limit order book for each stock (timestamped 

to the nanosecond), Net Order Imbalance Indicator (NOII) message data, reference prices, near prices, 

closing prices, and continuous-market trading volume as well as the information required to determine 

speed races, order cancellations, and the half-life quantity of a given price formation from the raw 

exchange data feed from Nasdaq (i.e., TotalView–ITCH).  

The main advantage of using the Nasdaq ITCH data over commonly used TAQ data is that the 

ITCH data contains true prevailing quotes, which allows us to properly track the life of an order. In 

contrast, Daily TAQ Quotes data provides the inner-most quotes and associated depths as provided by 

each participating exchange aggregated to the millisecond (or nanosecond) and cannot distinguish 

arrival rates and cancellation times of specific limit orders submitted to an exchange.8 Thus, Daily 

TAQ Quotes provides the aggregated real-time information seen by market participants, such as 

brokerages and other financial institutions, who seek best execution across the highly fragment equity-

                                                           
8 Despite decreasing the latency at which quotes are aggregated to nanoseconds, this inherent difference persists 
between the two data sources. 
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trading space, whereas the Nasdaq ITCH feed provides more finely tuned real-time information critical 

to the functioning of market makers and high-frequency liquidity providers on Nasdaq. Moreover, 

unlike the ITCH feed, TAQ does not provide ongoing NOII information throughout the closing cross. 

 

3.2. Measuring O-A Latencies and FIFO Ratios 

Leveraging our vantage point from a specific high-frequency market maker, we are able to place orders 

in rapid succession and capture when orders are acknowledged and queued. These orders are placed 

from co-located, dedicated OUCH ports, which are not shared with other market makers. This 

proprietary data-collection process allows us to definitively capture the proportion of orders placed 

first that are also first to be acknowledged based on the time deltas between order placements. 

The order-to-accept (O-A) latency captures the distance in time from when an order is placed 

to when it is officially acknowledged by the exchange (in this case, by Nasdaq). The O-A latency is 

measured by a server clock that is synchronized to precision clocks to ensure reliability in employing 

the server clock to time stamp the data. On average, we capture O-A latencies across 1.5 million 

messages daily. 

The first-in-first-out (FIFO) ratio captures the percentage of cases in which orders are accepted 

by the exchange in the correct sequence.  That is, the FIFO ratio represents the proportion of times in 

which the first order placed is also first to be acknowledged. To calculate this ratio, we begin by 

examining pairs of orders originating from two different dedicated OUCH ports.9 Depending on the 

distance in time between orders (measured in nanoseconds), we organize the order pairs along the 

following time-delta bins of interest: (0, 100), (100, 250), (250, 500), (500, 1000), (1000, 2000), (2000, 

4000), (4000, 8000), (8000, 16000), (16000, 32000), (32000, 64000).  

                                                           
9 Queueing uncertainty predominantly arises from orders placed across ports rather than from orders placed within the 
same port. That is, time priority is easily maintained when sending multiple orders from the same order port, but the 
question remains as to whether time priority is maintained across ports, which is the focal point of our study.   



 

 17 

For each order pair within a given bin, we ascertain the time at which each order is sent and 

the time stamp at which the exchange acknowledges the orders.  Specifically, time stamping occurs at 

the exchange’s matching-engine, which determines the time priority and queue position for orders in 

the resulting limit-order book.  Finally, within each time-delta bin, we count how many orders were 

acknowledged in the same time sequence as the order in which they were sent.  We call this metric the 

FIFO count, and we divide the FIFO count by the total number of orders sent to arrive at the FIFO 

ratio.  

 

3.3. Determining Speed Races and Excess Messaging by Way of Rapid Order Cancellations 

Each trading day presents millions of speed races by traders who seek to either take, provide, or remove 

liquidity from the limit-order book. To focus on the impact of queuing uncertainty on the behavior of 

market participants, we take the perspective of a liquidity provider who must race for queue position 

to add liquidity to the limit-order book upon each new price formation. Queue position in the limit-

order book is an important consideration to liquidity providers, and significant resources are deployed 

to secure a front position in the queue each time a new price level forms. With the added uncertainty 

arising from violations in price-time priority, we expect liquidity providers to submit orders in excess 

of the liquidity they ultimately intend to provide at a given price level, since (in the continuous market) 

they can rapidly cancel a number of these orders once their actual queue position in the limit-order 

book has been acknowledged.  

To identify the number of such liquidity-adding speed races each day, we focus on securities 

priced over $1.00 with a minimum tick size of one cent,10 and we identify instances in which the 

formation of a new bid (or offer) is at a price that was previously an offer (or a bid), where the bid-ask 

                                                           
10 A Tick Size Pilot Program was approved for a two-year time frame beginning October 3, 2016, wherein a test group 
of tickers would be quoted and traded in minimum increments of five cents. For additional details, refer to the FINRA 
website: https://www.finra.org/industry/tick-size-pilot-program  

https://www.finra.org/industry/tick-size-pilot-program
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spread is one cent. Intuitively, because stocks with a spread greater than one cent can be price-

improved, such price formations are not considered “races”. We also do not include instances where a 

bid or offer volume disappears and subsequently backfills at the same price, since a motivated 

participant could have posted more volume at that price in the first place. We provide a graphical 

example of these scenarios in Figure 1. 

For each speed race to provide liquidity, we count the number of orders and quantity of shares 

added upon formation of each price level. We then measure the natural quantity that dealers are willing 

to provide by the quantity of shares for each price level halfway through the life of the price level (see 

Figure 2 for a graphical representation). We use this quantity to calculate an Inverse Half-Life Ratio, 

which represents the total quantity of shares placed at the onset of the new price-formation speed race 

scaled by the half-life quantity of shares. In addition, we track the average percentage of orders placed 

at a new price-formation speed race that are cancelled within 50 μs to measure the extent of excess 

messaging that occurs at each speed race. We focus on order cancellations within 50 μs since the 

median O-A latency (i.e., acknowledgement time) during our sample period is 43 μs, and orders 

canceled long after the queue position is acknowledged may be information-based liquidity withdrawal 

(rather than a withdrawal due to intentional, ex-ante excess messaging at price formation). To set ideas, 

in Figure 3, we provide an example of an actual price and depth formation for symbol INTC (i.e., Intel 

Corporation) on May 31, 2017.  

 

3.4. Summary Statistics  

In Table 1, we present summary statistics on the basic characteristics of our sample. The average FIFO 

Ratio at a time delta of less than one µs is 59.31% (i.e., the average rate at which the first order placed 

is also first to be acknowledged by the exchange when consecutive orders are placed less than one µs 

apart is approximately 59%). There are approximately 2.8 million speed races per day to add liquidity 

at a new price formation, and on average, 18.8% of liquidity-adding orders placed at the onset of a new 
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price-formation speed race are cancelled within 50 μs of placement. In addition, we observe an average 

Inverse Half-Life Ratio of 3.52, which suggests that approximately 3.5 times as many orders are 

typically placed at the onset of a new price-formation speed race than the natural steady-state depth of 

the book for that price level. Furthermore, we observe that the average market-wide (i.e., aggregate) 

end-of-day order imbalance is 0.96%,11 with an average total on-close demand at approximately 36,600 

shares per ticker. The average daily share volume based on trades executed in the continuous market 

is approximately 935,000 shares per ticker. 

As demonstrated in Table 2, a substantial portion of daily volume occurs at the closing cross. 

On a typical (i.e., median) day, the average portion of daily volume that occurs at the close is 4.88% 

(per ticker) for Nasdaq-listed securities. This average is as high as 34.84% across all tickers during our 

sample period. Table 2 also reports the average ticker-level end-of-day imbalance on a typical (i.e., 

median) day; specifically, on a typical day, the average portion of on-close order imbalance that is 

unabsorbed by the final NOII message is 4.45% (when comparing percentage order imbalances across 

individual tickers, as opposed to calculating an aggregate market-wide percentage order imbalance as 

in Table 1).  

 

4. Empirical Results 

4.1. Order-to-Accept (O-A) Latency and FIFO Ratio over Time 

To examine fluctuations in the order-to-accept (O-A) latency, we begin by plotting the daily median 

O-A latency from January 2014 through May 2017. The results, which we present in Figure 4, show 

notable intra-day variation (i.e., jitter) over time. Although the jitter is less dramatic in the later part of 

                                                           
11 The aggregate end-of-day order imbalance is calculated based on the total unabsorbed orders from the last NOII 
message of the day as a percentage of the total on-close demand (across all tickers with an initial imbalance as of the 
first NOII message at 3:50:00 PM). 
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the sample, we continue to observe non-negligible differences in O-A times on both a day-to-day and 

intra-day basis.  

To examine the practical consequences of the observed jitter, we also examine the proportion 

of times in which the first order entered is also first to be acknowledged by the exchange’s matching 

engine (i.e., the FIFO Ratio). The results, which we plot in Figure 5a, shows that the FIFO Ratio is 

surprisingly low when orders are placed in the rapid succession. Specifically, when consecutive orders 

are placed less than one µs (i.e., one microsecond) apart in time, only 59% of the orders sent first are 

also first to be acknowledged. However, at greater latencies of ten µs between orders, the FIFO Ratio 

in price/time priority is roughly 96%, and reaches 99% at latencies of at least 16 µs between orders.  

In Figures 5b and 5c, we also plot the five-day moving average FIFO Ratio over time, and we 

observe substantial variation in the proportion of times in which the first order entered is also first to 

be acknowledged. For instance, in examining the FIFO Ratio over time when consecutive orders are 

placed up to two µs apart (Figure 5b), we observe that the average FIFO Ratio ranges from 48.07% to 

91.58% [untabulated]. Furthermore, we observe that the FIFO Ratio markedly improves over time, 

with a distinct upward trajectory following the launch of the Nasdaq Financial Framework (NFF) on 

May 26, 2016, which entailed a particularly intense series of technological upgrades.12 In contrast, in 

examining the FIFO Ratio over time when consecutive orders are placed less than one µs apart (Figure 

5c), we observe that the average FIFO Ratio ranges from 47.50% to 76.33% [untabulated]. Most 

notably, for these time deltas of < 1 µs between consecutive orders, the FIFO Ratio does not appear to 

improve materially with the passage of time, hovering at an average FIFO Ratio of 59.56% in 2017 

                                                           
12 This “groundbreaking” technological overhaul differed significantly from routine improvements made by Nasdaq 
as it entailed major upgrades to its architecture with a pronounced focus on the technical capabilities of the algorithmic 
matching, processing, and execution of orders by its Matching Engine (Nasdaq Debuts Groundbreaking Nasdaq 
Financial Framework, Enhancing Operations for Over 100 Market Operators Globally; May 16, 2016; Nasdaq Press 
Release accessed on <https://www.nasdaq.com/about/press-center/nasdaq-debuts-groundbreaking-nasdaq-financial-
framework-enhancing-operations>). 

https://www.nasdaq.com/about/press-center/nasdaq-debuts-groundbreaking-nasdaq-financial-framework-enhancing-operations
https://www.nasdaq.com/about/press-center/nasdaq-debuts-groundbreaking-nasdaq-financial-framework-enhancing-operations
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[untabulated]. To explore the implications of this structural break while accounting for other 

contemporaneous factors in a multivariate setting, we estimate the following OLS regressions: 

 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝐷𝐷𝑈𝑈𝑉𝑉𝑉𝑉𝑈𝑈𝐷𝐷 𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡       (1) 

 

We explore three different dependent variables: (i) Median OA Latency t, which represents the 

daily median distance in time from when an order is placed to when it is officially acknowledged by 

Nasdaq, and (ii) FIFO Ratio (< 2 µs) t and (iii) FIFO Ratio (< 1 µs) t, which represent the five-day 

moving average rate at which the first order placed is also first to be acknowledged by the exchange 

when consecutive orders are placed less than two µs or less than one µs apart, respectively. Our 

independent variable of interest, Post Upgrade t, equals one for days following the launch of the NFF 

on May 26, 2016, and zero otherwise. Xt is a vector of the following control variables: Total Demand 

at Closet, which is the total shares requested at close across all tickers on day t; Close-to-Close 

Volatilityt, which is the average absolute percentage change in closing price across all tickers from day 

t to day t+1; End-of-Day Volatilityt, which is the average absolute percentage change in price from 

3:50 PM to market close across all tickers on day t; Trading Volumet, which is the average share volume 

across all tickers based on trades executed in the continuous market on day t; Rebalance Day Flagt, 

which equals one on trading days that fall on (i) an index-rebalancing day, (ii) the last trading day of 

the month; (iii) the last trading day of the quarter; or (iv) the third Friday of the month; and Half Day 

Flagt, which is equals one on trading days closing at 1:00 PM ET, and zero otherwise. T-statistics are 

calculated using Newey-West standard errors with five lags to account for potential heteroskedasticity 

and serial correlation.  

The results, which we present in Table 3, show that the median O-A latency drops significantly 

following the major tech overhaul by the exchange. Specifically, we observe a coefficient estimate of 

-4.461 (t-statistic = -15.21) on the Post Upgrade indicator variable (Column 1), which translates to a 
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4.46 µs decline in the median O-A latency following the technological upgrade and represents roughly 

a 10% decline in the daily median O-A latency which, on average, was 44.07 µs prior to the upgrade 

and declines to 39.61 µs following the upgrade (untabulated). Moreover, consistent with Figure 5c, 

the FIFO Ratio for time deltas of two µs significantly increases following the upgrade, with a 

coefficient estimate of 0.0957 (t-statistic = 8.80) on the Post Upgrade indicator variable (Column 2), 

suggesting a substantial improvement in the exchange’s ability to properly queue consecutive orders 

placed two µs apart.  However, consistent with Figure 5b, the FIFO Ratio for time deltas of one µs 

does not materially change. Specifically, we observe a coefficient estimate of -0.0052 (t-statistic = -

0.84) on the Post Upgrade indicator variable (Column 3), which suggests that the technological 

upgrades by the exchange were insufficient in contemporaneously matching the technological progress 

of the fastest players. 

Together, Figures 4 and 5 alongside with Table 3 suggest that the NFF (i) had a meaningful 

impact on improving the time it takes Nasdaq to acknowledge an order and (ii) substantially improved 

the exchange’s ability to distinguish the timing of orders placed up to two µs apart, but was nonetheless 

(iii) insufficient in keeping up with the even lower latencies at which the fastest market participants 

operate, as evidenced by the exchange’s inability to reliably distinguish the correct timing of orders 

placed less than one µs apart.  

To provide historical context, the newer commercially available network adapters in 2016 

offered an average tick-to-trade latency of 1.538 µs,13 as shown by a marketing brochure (presented in 

Appendix A2) released during that time. Thus, improvements in the FIFO Ratio for time deltas of two 

µs, made possible by the launch of the NFF, were insufficient to keep up with the most up-to-date 

hardware available to market participants. That is, although the exchange invests in technological 

advancements over time, the fastest players continue to advance at an even faster pace.  

                                                           
13 See, for instance, a 2016 CSPi marketing brochure for the CSPi ARC Series E-Class network adapter 
(http://www.cspi.com/wp-content/uploads/2016/06/Tick-to-Trade-Latency_FINAL-2.pdf). 

http://www.cspi.com/wp-content/uploads/2016/06/Tick-to-Trade-Latency_FINAL-2.pdf
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Thus, during our sample period, the ongoing technological disparity between the exchange and 

its market participants is best proxied by FIFO Ratio (< 1 µs), which remains dismally low even after 

Nasdaq’s major upgrades went live.14 However, we note that benchmarks for technological disparity 

will change over time based on the prevailing capability of the exchange relative to the most advanced 

high-frequency traders and liquidity providers.  

Overall, the evidence thus far suggests that violations in time priority are a real and ongoing 

risk incurred by a time-sensitive liquidity provider and points to a paradoxical byproduct of the 

competition among high-frequency market participants – namely, their never-ending quest to be faster 

than one another has resulted in an ongoing technological disparity between market participants and 

the exchange itself. However, a new question now arises as to whether these violations in time priority, 

born from a difference of less than one microsecond, has palpable ramifications on other market 

participants outside of the first-in-line liquidity providers who directly experience the costs. We now 

proceed to examine the implications for market quality arising from the uncertainty in the path from 

order placement to official exchange acknowledgment.  

 

4.2. Implications for Market Quality: Excess Messaging and Rapid Order Cancellations 

To test the market externalities arising from the queuing uncertainty experienced by liquidity providers, 

we begin by exploring the implications for perceived liquidity/depth in the limit-order book, 

specifically as it pertains to excess messaging and rapid order cancellations. That is, in the continuous 

market, liquidity providers are free to cancel their orders, and thus, are likely to initially submit more 

liquidity-adding orders than they plan to fulfill, with the intent to cancel a proportion of their orders 

                                                           
14 We also note that what we uncover and document, by way of the FIFO ratio, is not simply a technological glitch, 
which would cause the FIFO ratio for all time deltas to be low for distinct periods (i.e., during a glitch) and should 
subsequently recover for all time deltas once the glitch is cleared. To the contrary, we find that larger time deltas 
between orders uniformly result in greater FIFO ratios, and conversely that smaller time deltas uniformly result in 
lower FIFO ratios. 
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upon learning their queue positions. For our sample period, liquidity providers are typically notified of 

their queue position within 43 μs of placing an order (as reported in Table 1). Thus, we begin by 

plotting the time-series trend in the daily average percentage of order cancellations that occur within 

50 μs of placing a liquidity-adding order at the onset of a price-formation speed race for queue position. 

The results, which we present in Figure 6, show a substantial increase in rapid-fire order cancellations 

in recent years, suggesting that excess messaging has increased substantially over time. 

To account for other contemporaneous factors of order cancellations in a multivariate setting, 

we estimate the following OLS regression:15 

 

% 𝑂𝑂𝑉𝑉𝑈𝑈𝐷𝐷𝑉𝑉 𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝐷𝐷𝑈𝑈𝑉𝑉𝑉𝑉𝑈𝑈𝐷𝐷𝑡𝑡 + 𝛽𝛽2 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂 𝑅𝑅𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃(< 1 µ𝑃𝑃)𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡       (2) 

 

Our dependent variable, % Order Cancellationst, is the daily average percentage of orders 

placed at a new price formation speed race that are cancelled within 50 µs,16 where speed races for 

queue position are identified by the formation of a new bid (or offer) at a price that was previously an 

offer (or bid) where the bid-ask spread is one cent. Our two independent variables of interest are: (i) 

FIFO Ratio (< 1 µs)t, which is the five-day moving average rate for day t at which the first order placed 

is also first to be acknowledged by the exchange when consecutive orders are placed less than one µs 

apart, and (ii) Post Upgrade t, which equals one for days following the launch of the NFF on May 26, 

2016, and zero otherwise. Xt is a vector of the following control variables: Close-to-Close Volatilityt, 

which is the average absolute percentage change in closing price across all tickers from day t to day 

t+1; Trading Volumet, which is the average share volume across all tickers based on trades executed 

in the continuous market on day t; Rebalance Day Flagt, which equals one on trading days that fall on 

(i) an index-rebalancing day, (ii) the last trading day of the month; (iii) the last trading day of the 

quarter; or (iv) the third Friday of the month; and Half Day Flagt, which is equals one on trading days 

                                                           
15 We choose OLS estimation for ease of exposition. A double-censored Tobit model yields very similar results. 
16 Our results are robust to counting the orders cancelled within 100 μs.  
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closing at 1:00 PM ET, and zero otherwise. T-statistics are calculated using Newey-West standard 

errors with five lags to account for potential heteroskedasticity and serial correlation.17  

The results, which we present in Panel A of Table 4, show that % Order Cancellations is 

substantially and significantly associated with both the FIFO Ratio (Column 1) and Post Upgrade 

indicator (Column 2), with coefficient estimates of -0.0714 (t-statistic = -2.93) and 0.0295 (t-statistic 

= 8.92), respectively. That is, in examining the percentage of orders cancelled within 50 μs of 

placement (which is when queueing position is revealed to liquidity providers), we see that the 

percentage of rapid order cancellations continues to increase in the period following a major 

technological upgrade by the exchange, which is consistent with the evidence that queueing uncertainty 

and violations in time priority has exacerbated over time due to the continued technological disparity 

between the exchange and its market participants. Overall, in the regression specification including 

both variables of interest (Column 3), the FIFO Ratio has a coefficient estimate of -0.0604 (t-statistic 

= -2.50), which suggests that an increase in the FIFO Ratio from 60% to 90% translates to a 1.81% 

decline in the rapid-fire order cancellations occurring within 50 μs of placement. For reference, such a 

decline represents a 9.64 percent decrease in the average order cancellation rate of 18.78% (as reported 

in Table 1).  

As an additional exploration of violations in time priority and their impact on excess 

messaging, we explore how the FIFO ratio relates to the Inverse Half Life Ratio, which measures the 

total quantity of shares added to the limit-order book at the onset of a new price-formation speed race 

scaled by the half-life quantity of shares, providing an indication of the extent of excess messaging 

relative to the natural steady-state depth that dealers are willing to provide at the newly formed price 

level. Thus, we estimate the following OLS regression: 

 

𝐹𝐹𝐶𝐶𝐼𝐼𝐷𝐷𝑉𝑉𝑃𝑃𝐷𝐷 𝐻𝐻𝑉𝑉𝐶𝐶𝐻𝐻 𝐿𝐿𝐶𝐶𝐻𝐻𝐷𝐷 𝑅𝑅𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝐷𝐷𝑈𝑈𝑉𝑉𝑉𝑉𝑈𝑈𝐷𝐷𝑡𝑡 + 𝛽𝛽2 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂 𝑅𝑅𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃(< 1 µ𝑃𝑃)𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡     (3) 

                                                           
17 Our results are robust to ten-day and 20-day lags. 
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FIFO Ratio (< 1 µs) t and Post Upgrade t are, again, the independent variables of interest, and 

Xt is a vector of the same control variables as specified in regression equation (2). As before, t-

statistics are calculated using Newey-West standard errors with five lags to account for potential 

heteroskedasticity and serial correlation.18 

The results, which we present in Panel B of Table 4, show that the Inverse Half-Life Ratio is 

also substantially and significantly associated with both the FIFO Ratio (Column 1) and Post Upgrade 

indicator (Column 2) with the same qualitative interpretations as our results from Panel A. Overall, in 

the regression specification including both variables of interest (Column 3), the FIFO Ratio has a 

coefficient estimate of -2.8825 (t-statistic = -3.03), which suggests that an increase in the FIFO Ratio 

from 60% to 90% translates to a 0.86 decline in the total quantity of shares placed at the onset of a new 

price-formation relative to the half-life quantity of shares. For reference, this ratio is typically around 

3.5 (as reported in Table 1). These numbers indicate that 3.5 times as many shares are typically added 

at the onset of a new price-formation speed race than the quantity remaining half-way throughout the 

life of the new price formation and that a 30% increase in the FIFO Ratio would bring this ratio down 

to 2.64 times. 

Overall, the results suggest that technological disparity and violations in time priority, as 

measured by FIFO Ratio (< 1 µs), pose a substantial concern for high-frequency liquidity providers. 

In turn, these liquidity providers submit an excess of order messages in rapid succession, many of 

which are then cancelled within 0.000050 seconds of placement and do not remain on the limit-order 

book throughout the life of the price-formation. Moreover, these behaviors persist following major 

improvements made by the exchange because the improvements, though material, are insufficient to 

match the ever-lower latencies at which high-frequency players can operate. However, the question 

                                                           
18 Our results are robust to ten-day and 20-day lags. 
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still remains as to whether randomness in time priority has a meaningful impact on other market 

participants. We now proceed to explore the implications for liquidity seekers in the market. 

 

4.3. Implications for Market Quality: Unabsorbed Order Imbalance at the Close 

To test the market externalities to liquidity seekers that result from the queuing uncertainty experienced 

by liquidity providers, we now explore the implications for market quality, specifically as it pertains 

to unabsorbed order imbalance at the closing cross on Nasdaq, which has been increasing over time 

(see Figure 7). As mentioned previously, the closing cross, which occurs alongside the continuous 

market for the last ten minutes of the trading day, is an important market mechanism that sets the 

Nasdaq Official Closing Price (NOCP), and, accordingly, a substantial portion of daily volume occurs 

at the closing cross. However, in stark contrast to orders placed in the continuous market, liquidity 

providers are prohibited from canceling their imbalance-only (IO) orders placed at the closing cross 

and do not see their queue positions until settlement at the end of the trading day. As a result, they are 

unable to employ the strategy of excess messaging and rapid order cancellations, as we have shown to 

occur in the continuous market. Thus, a natural question arises as to whether the ongoing technological 

disparity (and resulting randomness in time priority) causes liquidity providers to be less willing to 

absorb on-close market demand given the increased difficulty in estimating predictive fill rates relative 

to other liquidity providers. 

To account for other contemporaneous factors in a multivariate setting, we estimate the 

following OLS regression:19 

 

% 𝑂𝑂𝑉𝑉𝑈𝑈𝐷𝐷𝑉𝑉 𝐹𝐹𝐼𝐼𝐼𝐼𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐷𝐷𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝐷𝐷𝑈𝑈𝑉𝑉𝑉𝑉𝑈𝑈𝐷𝐷𝑡𝑡 + 𝛽𝛽2 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂 𝑅𝑅𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃(< 1 µ𝑃𝑃)𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡       (4) 

 

                                                           
19 We choose OLS estimation for ease of exposition. A double-censored Tobit model yields very similar results. 



 

 28 

Our dependent variable, % Order Imbalancet, is the average percentage of unabsorbed orders 

(across all tickers) from the final Net Order Imbalance Indicator (NOII) message on day t. Our 

independent variables of interest are FIFO Ratio (< 1 µs)t and Post Upgrade t. Xt is a vector of the 

following control variables: Total Demand at Closet, which is the total shares requested at close across 

all tickers on day t; Close-to-Close Volatilityt, which is the average absolute percentage change in 

closing price across all tickers from day t to day t+1; End-of-Day Volatilityt, which is the average 

absolute percentage change in price from 3:50 PM to market close across all tickers on day t; Trading 

Volumet, which is the average share volume across all tickers based on trades executed in the 

continuous market on day t; Rebalance Day Flagt, which equals one on trading days that fall on (i) an 

index-rebalancing day, (ii) the last trading day of the month; (iii) the last trading day of the quarter; or 

(iv) the third Friday of the month; and Half Day Flagt, which is equals one on trading days closing at 

1:00 PM ET, and zero otherwise. T-statistics are calculated using Newey-West standard errors with 

five lags to account for potential heteroskedasticity and serial correlation.20  

The results, which we present in Table 5, show that % Order Imbalance is substantially and 

significantly associated with both the FIFO Ratio (Column 1) and Post Upgrade indicator (Column 

2), with coefficient estimates of -0.0120 (t-statistic = -2.79) and 0.0011 (t-statistic = 2.25), respectively. 

That is, consistent with the idea that continued technological disparity has exacerbated violations in 

time priority, and accordingly, the risk to liquidity providers, we see that unfilled on-close demand for 

liquidity continues to increase in the period following a major technological upgrade by the exchange. 

Overall, an increase in the FIFO Ratio from 60% to 90% translates to a 0.345% decline in % Order 

Imbalance (Column 3), which represents a 35.9 percent decline from the daily average percentage 

order imbalance of 0.96% (as reported Table 1). Furthermore, % Order Imbalance moves as expected 

with observable fundamental factors that should contribute to end-of-day imbalances. For instance, 

                                                           
20 Our results are robust to ten-day and 20-day lags. 



 

 29 

end-of-day imbalance tends to be substantially greater when total on-close demand is greater 

(coefficient estimate = 0.0936; t-statistic = 4.93), and tends to be substantially higher on rebalance days 

(coefficient estimate = 0.0025; t-statistic = 1.68).  

As a sanity check, we conduct a subsample analysis to examine the relation between the FIFO 

Ratio and unabsorbed order imbalance for large cap versus non-large cap stocks, whereby we bifurcate 

our sample between stocks in the top quintile based on market capitalization and those that are not (in 

the top quintile). Because large-cap inventory is inherently easier to hedge, liquidity providers should 

be less concerned with the prospect of unexpectedly carrying a position overnight, thereby making 

them less deterred by the prevailing queuing uncertainty when placing IO orders to absorb on-close 

demand for large-cap stocks.  

The results, which we present in Table 6, are consistent with this expectation. Specifically, we 

observe that tickers at smaller market capitalizations stand to benefit more from improvements in 

properly determining time priority, whereby an increase in the FIFO ratio from 60% to 90% is 

associated with a 1.21% decline (coefficient estimate = -0.0403; t-statistic = -2.95) in the aggregate 

percentage order imbalance among stocks outside of the top quintile with respect to market 

capitalization (Column 1). In comparison, a similar increase in the FIFO Ratio is associated with a 

0.27% decline (coefficient estimate = -0.0089; t-statistic = -2.24) in the aggregate percentage order 

imbalance among stocks in the top quintile with respect to market capitalization (Column 2). 

Overall, prior literature has focused on technological improvements made by either the market 

participants or the exchange, but the technological gap between these two groups has not been studied 

until now. We argue that this disparity is also a very important part of discussions of optimal market 

design. Our analyses not only document violations in time priority but also provide suggestive evidence 

that this uncertainty borne by speed-sensitive liquidity providers poses a material risk, which, in turn, 

is passed on to liquidity seekers who are more likely to suffer end-of-day order imbalances for their 

unfilled, on-close orders when randomness in time priority is high. 
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5. Discussion and Policy implications 

In this paper, we provide evidence that competition among speed-sensitive market participants to gain 

a technological advantage over one another has led to technological imbalance between the fastest 

participants and the exchange itself. Specifically, we find that the proportion of times in which the first 

order entered is also first to be acknowledged by the exchange is quite low when consecutive orders 

are placed at very high frequencies. We also provide suggestive evidence of impaired market quality 

in the form of: (i) increased excess messaging in the continuous market, and (ii) greater unabsorbed 

order imbalance at the closing cross as a result of the randomness in honoring price-time priority. Most 

importantly, we provide evidence that these issues do not improve following a major technological 

upgrade by the exchange, in part, because of the continued technological disparity between the 

exchange and its high-frequency players. 

With respect to potential solutions to the issues we have empirically documented, we propose 

a few alternative market designs that could alleviate an exchange’s perceived ambiguity in time 

priority. For instance, queuing problems can be mitigated, to an extent, with finer and finer tick sizes. 

That is, finer tick sizes first promote price-based priority, making time priority less important, as 

evidenced by the lower depth at each (now, finer) quote following decimalization (SEC, 2012). 

However, there are limits to how finely tick size can be meaningfully reduced, and relatedly, Werner, 

Rindi, Buti, and Wen (2023) theoretically and empirically demonstrate that tick-size reductions may 

not necessarily lead to improved market quality. Thus, an ever-decreasing tick size is not the first-order 

solution to effectively address technological disparity. 

With respect to potential infrastructure-related solutions, one option is to time stamp each order 

message as it arrives at the gateway server. Each gateway could then send time-stamped messages to 

the matching engine server, allowing the messages to be properly sorted and prioritized. This approach 

has the benefit of enhancing time priority, though at the cost of increased delays in message processing. 

There is a more serious risk that orders could become more severely out of sequence, particularly under 
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periods of heavy trading volume. However, dynamic buffer window lengths could potentially address 

these issues.  

Another option is to split the message traffic across multiple matching engines to allow market 

participants to send orders directly to the matching engine (without first accessing the gateway server). 

This solution would reduce the queuing of messages and allow the networking technology to accurately 

determine time priority, as evidenced by the improvement in FIFO ratios (for time deltas of < 2 μs 

between consecutive orders) following the implementation of the NFF on May 26, 2016. Thus, we 

anticipate that subsequent updates would lead to further improvements in the FIFO ratio even at sub-

microsecond time deltas between consecutive orders.  

Overall, as we have demonstrated, market participants continue to also improve (and quite 

rapidly) as the exchange advances. Thus, solutions with the most longevity must account for the fact 

that technological disparity is likely to persist. 

 

6. Concluding Remarks  

Our study bridges an important gap in the literature, which has heretofore taken queuing uncertainty 

for granted without exploring the source and severity of this phenomena. Our study also sheds light on 

a phenomena often referred to as “quote stuffing” (Gai, Yao, and Ye, 2013; Egginton, Van Ness, and 

Van Ness, 2016) by offering evidence that queuing uncertainty itself contributes to both excess 

messaging and impaired market quality. 

 To be clear, much work is required before we can arrive at more definitive conclusions as to 

the extent of the benefits versus costs of suggested improvements to market structure and design. 

Overall, the evidence we present suggests an unintended but costly byproduct of the asymmetry in the 

technological advances of high-frequency liquidity providers relative to that of the exchange, and 

broaches an important and ever-present issue to consider in market design in a high-frequency era. 
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Table 1. Summary Statistics 
 

This table presents descriptive statistics for our sample of 3,740 unique tickers spanning the first 
trading day of January 2014 through the last trading day of April 2017. We begin with a total of 
2,911,692 ticker-days. We then aggregate all statistics to a daily frequency, and we report summary 
statistics on these daily averages for the following measures: FIFO Ratio (< 1 µs),  FIFO Ratio (< 2 
µs), Order-to-Accept (O-A) Latency, Intra-Day Jitter, Speed Races for Queue Position, Inverse Half-
Life Ratio, % Order Cancellations, % Order Imbalance, % Tickers with Order Imbalance, % Tickers 
with ≥ 20% Order Imbalance, Total Demand at Close (in millions), and Trading Volume (in millions). 
Definitions of these variables are described in detail in Appendix Table A1. 
 

 
 

 Mean (Stdev.) P25 P75 
FIFO Ratio (< 1 µs) 
 

 0.5931 (0.052) 0.5568 0.6216 

FIFO Ratio (< 2 µs) 
 

 0.6440 (0.080) 0.5888 0.6961 

Order-to-Accept (O-A) Latency (µs) 
 

 42.89 (5.84) 39.94 43.81 

Intra-Day Jitter (µs) 
 

 10.15 (4.15) 6.65 13.50 

Speed Races for Queue Position 
 

 2,828,673 (892,079) 2,269,080 3,196,352 

Inverse Half-Life Ratio 
 

 3.52 (1.27) 2.96 3.57 

% Order Cancellations (within 50 µs) 
 

 0.1878 (0.021) 0.1730 0.1977 

% Order Imbalance  
 

 0.0096 (0.014) 0.0051 0.0100 

% Tickers with Order Imbalance  
 

 0.2444 (0.068) 0.2009 0.2777 

% Tickers with ≥ 20% Order Imbalance  
 

 0.0675 (0.028) 0.0481 0.0807 

Total Demand at Close 
 

 0.0366 (0.034) 0.0256 0.0364 

Trading Volume 
 

 0.9351 (0.173) 0.8319 1.0228 

Number of observations  819 --- --- --- 
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Table 2. Summary Statistics for Select Tickers  
 

This table reports, for select tickers at various quantiles: (i) the percentage of orders cancelled within 
50 µs of placement; (ii) the average ratio of the total quantity of shares placed at the onset of a new 
price-formation speed race scaled by the half-life quantity of shares; (iii) the number of liquidity-
adding speed races for queue position, identified by the formation of a new bid (or offer) at a price that 
was previously an offer (or bid) where the bid-ask spread is one cent; (iv) the percentage of daily 
volume filled at the close; and (v) the percentage order imbalance from the final Net Order Imbalance 
Indicator (NOII) message of the day. We also report these metrics for the daily mean across all tickers 
during this timeframe. Overall, our sample consists of 3,740 unique tickers spanning the first trading 
day of January 2014 through the last trading day of April 2017. 
 

  P25 Median P75 Max 
      

Daily mean across all tickers      
(i)   % order cancellations  0.1730 0.1854 0.1977 0.2541 
(ii)  Excess Messaging Ratio  2.96 3.21 3.57 17.04 
(iii) Speed races for queue position  488 650 669 1,423 
(iv)  % of volume at close  0.0413 0.0488 0.0582 0.3484 
(v)   % end of day imbalance  0.0354 0.0445 0.0602 0.1590 

      
“MSFT”      

(i)   % order cancellations  0.5213 0.5518 0.6053 0.8945 
(ii)  Excess Messaging Ratio  4.23 4.90 5.80 12.91 
(iii) Speed races for queue position  2,336 3,415 5,014 41,647 
(iv)  % of volume at close  0.0570 0.0784 0.1051 0.2997 
(v)   % end of day imbalance  0.0000 0.0000 0.0000 0.2439 

      
“YHOO”      

(i)   % order cancellations  0.4842 0.5294 0.5820 0.7535 
(ii)  Excess Messaging Ratio  3.54 4.37 5.00 7.77 
(iii) Speed races for queue position  2,474 3,544 5,550 43,795 
(iv)  % of volume at close  0.0209 0.0349 0.0736 0.4985 
(v)   % end of day imbalance  0.0000 0.0000 0.1500 0.3993 

      
“AAAP”      

(i)   % order cancellations  0.0000 0.0000 0.0000 0.5000 
(ii)  Excess Messaging Ratio  1.00 1.50 2.00 12.49 
(iii) Speed races for queue position  2 4 8 117 
(iv)  % of volume at close  0.0018 0.0041 0.0089 0.3791 
(v)   % end of day imbalance  0.0000 0.0000 0.2125 1.0000 

      
“CUR”      

(i)   % order cancellations  0.0481 0.1401 0.2136 0.7897 
(ii)  Excess Messaging Ratio  2.05 2.60 3.62 28.49 
(iii) Speed races for queue position  38 86 173 1,106 
(iv)  % of volume at close  0.0007 0.0030 0.0083 0.1631 
(v)   % end of day imbalance  0.0000 0.1826 0.6831 1.0000 
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Table 3. Technological Disparity Pre-Versus-Post Exchange Upgrade  
 

This table presents estimates from the following time-series OLS regressions: 
 
 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑉𝑉 𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝐷𝐷𝑈𝑈𝑉𝑉𝑉𝑉𝑈𝑈𝐷𝐷 𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡 
 
 

The dependent variable in Column (1), Median OA Latency t, is the median distance in time from when 
an order is placed to when it is officially acknowledged by Nasdaq for each day. The dependent 
variable in Columns (2) and (3), FIFO Ratio (< 2 µs) t and FIFO Ratio (< 1 µs) t, capture the five-day 
moving average rate at which the first order placed is also first to be acknowledged by the exchange 
when consecutive orders are placed less than two µs apart or less than one µs apart , respectively. Post 
Upgrade t equals one for days following the major tech overhaul by Nasdaq (NFF) on May 26, 2016, 
and zero otherwise. X t is a vector of the following control variables, which are described in Appendix 
Table A1: Total Demand at Close (in millions), Close-to-Close Volatility, End-of-Day Volatility, 
Trading Volume (in millions), Rebalance Day Flag, and Half Day Flag. All variables have been 
aggregated at a daily frequency from January 2014 through May 2017, from a sample of 4,034,086 
ticker-days. T-statistics are calculated using time-clustered standard error (column 1) and Newey-West 
standard errors with 5 lags (Columns 2 and 3). Statistical significance at the 10%, 5%, and 1% levels 
are denoted by *, **, and ***, respectively. 
 

 OA Latency (Median) FIFO Ratio (< 2 µs) t FIFO Ratio (< 1 µs) t 
 (1) (2) (3) 
Post Upgrade t -4.4614*** 0.0957*** -0.0052 

 [-15.21] [8.80] [-0.84] 
 

   

Total Demand at Close t -9.7152 0.0994 0.0748 

 [-1.45] [1.07] [1.21] 
    

Close-to-Close Volatility t -0.0380*** 0.0010*** 0.0005*** 

 [-5.45] [5.18] [3.85] 
    

End-of-Day Volatility t -0.2638*** -0.0152*** -0.0126*** 
 [-2.78] [-9.67] [-11.73] 
    

Trading Volume t 2.5092 -0.0242 -0.0098 

 [1.44] [-0.92] [-0.52] 
    

Rebalance Day Flag t 0.6297 -0.0158* -0.0111* 

 [0.73] [-1.72] [-1.72] 
    

Half-Day Flag t 1.1549 -0.0178 -0.0136 

 [0.74] [-0.76] [-0.67] 
    

Intercept 42.1789*** 0.6376*** 0.6014*** 
 [28.13] [28.32] [35.65] 
    

Adjusted R-squared 0.1361 0.2981 0.0051 
Number of observations 808 808 808 
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Table 4. FIFO Ratio and Excess Messaging  
 

This table presents estimates from the following time-series OLS regressions: 
 
 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑉𝑉 𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝐷𝐷𝑈𝑈𝑉𝑉𝑉𝑉𝑈𝑈𝐷𝐷 𝑡𝑡 + 𝛽𝛽2 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂 𝑅𝑅𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃 (<  1 µ𝑃𝑃)𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡  
 
 

The dependent variable in Panel A, % Order Cancellationst, is the average percentage of orders placed 
at a new price-formation speed race that are cancelled within 50 µs, where liquidity-adding speed races 
for queue position are identified by the formation of a new bid (or offer) at a price that was previously 
an offer (or bid) where the bid-ask spread is one cent. The dependent variable in Panel B, Inverse Half-
Life Ratio t, is the average ratio of the total quantity of shares placed at the onset of a new price-
formation speed race scaled by the half-life quantity of shares, where the half-life quantity is identified 
as the quantity of shares available halfway through the life of a given price level. Post Upgrade t equals 
one for days following the major tech overhaul by Nasdaq (NFF) on May 26, 2016, and zero otherwise. 
FIFO Ratio(< 1 µs) t is the five-day moving average rate at which the first order placed is also first to 
be acknowledged by the exchange when consecutive orders are placed less than one µs apart. X t is a 
vector of the following control variables, which are described in Appendix Table A1: Close-to-Close 
Volatility, Trading Volume (in millions), Rebalance Day Flag, and Half Day Flag. All variables have 
been aggregated at a daily frequency from January 2014 through May 2017, from a sample of 
4,034,086 ticker-days. T-statistics are calculated using Newey-West standard errors with 5 lags. 
Statistical significance at the 10%, 5%, and 1% levels are denoted by *, **, and ***, respectively. 
 

 

Panel A. Dependent Variable = % Order Cancellations t 
 

 (1) (2) (3) 
FIFO Ratio (< 1 µs) t -0.0714***  -0.0604** 

 [-2.93]  [-2.50] 
    

Post Upgrade t  0.0295*** 0.0292*** 

  [8.92] [9.13] 
    

Close-to-Close Volatility t 0.0001*** 0.0002*** 0.0002*** 

 [5.68] [4.81] [5.82] 
    

Trading Volume t -0.0073 0.0041 0.0036 

 [-1.26] [0.89] [0.78] 
    

Rebalance Day Flag t -0.0013 0.0000 -0.0003 

 [-0.57] [0.02] [-0.18] 
    

Half-Day Flag t -0.0207*** -0.0113** -0.0121** 

 [-2.58] [-2.03] [-2.13] 
    

Intercept 0.2352*** 0.1744*** 0.2108*** 
 [14.03] [37.85] [13.33] 
 

 
  

Adjusted R-squared 0.0314 0.4284 0.4480 
Number of observations 808 808 808 
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Table 4 continued. 
 

Panel B. Dependent Variable = Inverse Half-Life Ratio t 
 

 (1) (2) (3) 
FIFO Ratio (< 1 µs) t -3.0044***  -2.8825*** 

 [-4.27]  [-4.03] 
    

Post Upgrade t  0.3364*** 0.3241*** 

  [3.01] [2.99] 
    

Close-to-Close Volatility t 0.0012 0.0004 0.0019 

 [0.79] [0.26] [1.23] 
    

Trading Volume t -0.4565* -0.3137 -0.3356 

 [-1.92] [-1.23] [-1.39] 
    

Rebalance Day Flag t -0.1296* -0.1027 -0.1190* 

 [-1.85] [-1.41] [-1.68] 
    

Half-Day Flag t -0.7033*** -0.5677*** -0.6078*** 

 [-4.63] [-3.74] [-4.46] 
    

Intercept 5.6632*** 3.6587*** 5.3922*** 
 [13.24] [16.18] [12.84] 
 

 
  

Adjusted R-squared 0.0160 0.0177 0.0310 
Number of observations 808 808 808 
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Table 5. Technological Disparity and End-of-Day Order Imbalance  
 

This table presents estimates from the following time-series OLS regression: 
 
 

% 𝑂𝑂𝑉𝑉𝑈𝑈𝐷𝐷𝑉𝑉 𝐹𝐹𝐼𝐼𝐼𝐼𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐷𝐷𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝐷𝐷𝑈𝑈𝑉𝑉𝑉𝑉𝑈𝑈𝐷𝐷 𝑡𝑡 + 𝛽𝛽2 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂 𝑅𝑅𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃 (<  1 µ𝑃𝑃)𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡 
 
 

The dependent variable, % Order Imbalance t, is the percentage of unabsorbed orders from the final 
Net Order Imbalance Indicator (NOII) message of the day (across all tickers with a starting imbalance 
as of the first NOII message at 3:50:00 PM). Post Upgrade t equals one for days following the major 
tech overhaul by Nasdaq (NFF) on May 26, 2016, and zero otherwise. FIFO Ratio (< 1 µs) t, captures 
the five-day moving average rate at which the first order placed is also first to be acknowledged by the 
exchange when consecutive orders are placed less than one µs apart. X t is a vector of the following 
control variables, which are described in Appendix Table A1: Total Demand at Close (in millions), 
Close-to-Close Volatility, End-of-Day Volatility, Trading Volume (in millions), Rebalance Day Flag, 
and Half Day Flag. All variables have been aggregated at a daily frequency from January 2014 through 
April 2017, from a sample of 2,911,692 ticker-days. T-statistics are calculated using Newey-West 
standard errors with 5 lags. Statistical significance at the 10%, 5%, and 1% levels are denoted by *, 
**, and ***, respectively. 
 

 (1) (2) (3) 
FIFO Ratio (< 1 µs) t -0.0120***  -0.0115*** 

 [-2.79]  [-2.61] 
    

Post Upgrade t  0.0011** 0.0011** 
  [2.25] [2.15] 
    

Total Demand at Close t 0.0963*** 0.0927*** 0.0936*** 

 [5.16] [4.84] [4.93] 
    

Close-to-Close Volatility t 0.0000 -0.0000 0.0000 

 [0.20] [-0.01] [0.33] 
    

End-of-Day Volatility t -0.0001* 0.0000 -0.0001 
 [-1.91] [0.93] [-1.31] 
    

Trading Volume t 0.0012 0.0018 0.0017 

 [0.98] [1.48] [1.41] 
    

Rebalance Day Flag t 0.0023 0.0027* 0.0025* 

 [1.55] [1.78] [1.68] 
    

Half-Day Flag t 0.0071* 0.0076** 0.0074** 

 [1.89] [2.09] [1.98] 
    

Intercept 0.0106*** 0.0027** 0.0097*** 
 [3.84] [2.04] [3.38] 
    

Adjusted R-squared 0.3422 0.3440 0.3481 
Number of observations 808 808 808 
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Table 6. Technological Disparity and End-of-Day Imbalance for Large-Cap Vs. Non-Large Cap Stocks  
 

This table presents estimates from the following time-series OLS regression: 
 
 

% 𝑂𝑂𝑉𝑉𝑈𝑈𝐷𝐷𝑉𝑉 𝐹𝐹𝐼𝐼𝐼𝐼𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐷𝐷𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽1 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂 𝑅𝑅𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃 (<  1 µ𝑃𝑃)𝑡𝑡 + 𝑋𝑋𝑡𝑡 ∙ 𝛾𝛾 + 𝜀𝜀𝑡𝑡 
 
 

The dependent variable, % Order Imbalance t, is the percentage of unabsorbed orders from the final 
Net Order Imbalance Indicator (NOII) message of the day (across all tickers with a starting imbalance 
as of the first NOII message at 3:50:00 PM). Columns (1) and (2) present the results separated by non-
large-cap and large-cap tickers, respectively, where the large-cap tickers are determined by the top 
quintile based on market capitalization. FIFO Ratio (< 1 µs) t is the five-day moving average rate at 
which the first order placed is also first to be acknowledged by the exchange when consecutive orders 
are placed less than one µs apart. X t is a vector of the following control variables, which are described 
in Appendix Table A1: Total Demand at Close (in millions), Close-to-Close Volatility, End-of-Day 
Volatility, Trading Volume (in millions), Rebalance Day Flag, and Half Day Flag. All variables have 
been aggregated at a daily frequency from January 2014 through April 2017, from a sample of 
2,911,692 ticker-days. T-statistics are calculated using Newey-West standard errors with 5 lags. 
Statistical significance at the 10%, 5%, and 1% levels are denoted by *, **, and ***, respectively. 
 

 Non-Large Cap Tickers Large-Cap Tickers 
 (1) (2) 
FIFO Ratio (< 1 µs) t -0.0403*** -0.0089** 
 [-2.95] [-2.24] 
   

Total Demand at Close t 0.1580*** 0.0343*** 

 [2.96] [12.62] 
   

Close-to-Close Volatility t -0.0000 0.0000 

 [-1.48] [0.14] 
   

End-of-Day Volatility t -0.0013*** -0.0001 
 [-3.85] [-0.93] 
   

Trading Volume t -0.0408*** 0.0007 

 [-7.28] [1.90] 
   

Rebalance Day Flag t 0.0016 0.0027*** 

 [0.77] [3.12] 
   

Half-Day Flag t -0.0035* 0.0082*** 

 [-0.85] [3.69] 
   

Intercept 0.0664*** 0.0062** 
 [6.85] [2.40] 
   

Adjusted R-squared 0.065 0.332 
Number of observations 808 808 
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Figure 1. Race Scenario for Queue Position to Add Liquidity upon New Price Formation 
 

This figure graphically demonstrates the kind of price formations that predicate a speed race to add 
liquidity to the limit-order book. Specifically, a speed race is defined by the formation of a new bid (or 
offer) at a price that was previously an offer (or a bid), where the bid-ask spread is one cent. For our 
analyses, we focus on securities priced over $1.00 with a minimum tick size of one cent. 
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Figure 2. Depicting the Half-Life Quantity for a New Price Formation 
 

This figure graphically demonstrates the half-life quantity of shares on the limit-order book for a given 
price formation. Specifically, we measure the steady-state depth that dealers are willing to provide 
by the quantity of shares for each price level halfway through the life of the price level. We then 
use this quantity to calculate a Half-Life Ratio, which represents the half-life quantity scaled by 
the total quantity of shares added at the onset of the new price-formation speed race. 
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Figure 3. Sample Price and Depth Formation 
 

This figure plots a sample price and liquidity formation for INTC (Intel Corporation) on May 31, 2017. The top figure demonstrates a speed 
race to add liquidity to the limit-order book, where the best bid and ask quotes experience a one-cent shift upward. The bottom figures 
demonstrate the open-order count and resting share count, respectively, throughout the life of this given price formation, whereby the x-axis 
represents the logged time delta (in ns) since the onset of this speed race. The vertical gray line demonstrates the half-life quantity based on 
this logarithmic time scale (i.e., the quantity of shares for a given price formation halfway through the life of the price level). 
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Figure 4. Median Order-to-Accept (O-A) Latency over Time on a Single Port 
 

This figure plots the daily median order-to-accept (O-A) latency in microseconds (µs) for the period spanning January 2014 through May 
2017. The O-A latency refers to the distance in time from when an order is placed to when it is acknowledged by the matching engine. The 
20th percentile and 80th percentile OA latencies for each day are plotted in gray. 
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Figure 5a. FIFO Ratio Based on the Time between Consecutive Orders 
 

This figure plots the FIFO ratio against the time (in nanoseconds, ns) between back-to-back orders. 
The FIFO ratio is the proportion of first orders placed that are first to be acknowledged by Nasdaq’s 
matching engine. Here, we plot the average FIFO ratio across the varying time deltas for the period 
spanning January 2014 through May 2017.  
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Figure 5b. FIFO Ratio over Time (for time deltas of < 2 µs) 
 

This figure plots the five-day moving average FIFO ratio over time for time deltas of < 2 µs between 
back-to-back orders. The FIFO ratio is the proportion of first orders placed that are first to be 
acknowledged by Nasdaq’s matching engine.  
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Figure 5c. FIFO Ratio over Time (for time deltas of < 1 µs) 
 

This figure plots the five-day moving average FIFO ratio over time for time deltas of < 1 µs between 
back-to-back orders. The FIFO ratio is the proportion of first orders placed that are first to be 
acknowledged by Nasdaq’s matching engine.  
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Figure 6. Percentage of Rapid Order Cancellations over Time  
 

This figure plots, at a daily frequency from January 2014 through May 2017, the average percentage 
of orders placed at a new price-formation speed race that are cancelled within 50 μs. These liquidity-
adding speed races for queue position are identified by the formation of a new bid (or offer) at a price 
that was previously an offer (or bid) where the bid-ask spread is one cent. 
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Figure 7. Total Daily Number of Tickers with End-of-Day Order Imbalance 
 

This figure plots the total number of tickers, at a daily frequency, with minimum ending order imbalance >0% (upper left), ≥ 25% (upper 
right), ≥ 50% (lower left), or ≥ 75% (lower right), based on the final Net Order Imbalance Indicator (NOII) message of the day from January 
2014 through April 2017. 
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Appendix A1: Variable Definition 
 

This table defines and describes the variables used throughout the paper alongside their respective 
sources. 
 
Variables 
 

Definition Source 
Close-to-Close 
Volatility 

Average absolute % change in closing price across all 
tickers 

ITCH 

   
End-of-Day Volatility Average absolute % change in price from 3:50 PM to market 

close across all tickers 
ITCH 

   
FIFO Ratio (< 1 µs) 
 

Daily average rate at which the first order placed is also first 
to be acknowledged by the exchange when consecutive 
orders are placed less than one µs apart 
 

Proprietary 

FIFO Ratio (< 2 µs) 
 

Daily average rate at which the first order placed is also first 
to be acknowledged by the exchange when consecutive 
orders are placed less than two µs apart 
 

Proprietary 

Half Day Flag Equals one on trading days closing at 1:00 PM ET, and zero 
otherwise 

Nasdaq.com 

   
Intra-Day Jitter (µs) 
 

Daily difference between the 80th and 20th percentile of O-A 
latencies across all orders throughout the day 
 

Proprietary 

Inverse Half-Life 
Ratio 
 

Daily average ratio of the total quantity of shares placed at 
the onset of a new price-formation speed race scaled by the 
half-life quantity of shares, where the half-life quantity is 
identified as the quantity of shares available halfway 
through the life of a given price level 
 

ITCH 

Order-to-Accept (O-
A) Latency (µs) 
 

Daily median distance in time (in µs) from when an order is 
placed to when it is acknowledged by the matching engine 
 

Proprietary 

Post Upgrade Equals one on days following the major tech overhaul by 
Nasdaq (NFF) on May 26, 2016, and zero otherwise 

Nasdaq.com 

   
Rebalance Day Flag Equals one on trading days that fall on (i) an index-

rebalancing day, (ii) the last trading day of the month; (iii) 
the last trading day of the quarter; or (iv) the third Friday of 
the month 

Nasdaq.com 

   
Total Demand at 
Close 
 

Daily average number of shares requested at close across all 
tickers 
 

ITCH 

Trading Volume 
 

Daily average share volume across all tickers based on 
trades executed in the continuous market 

CRSP 
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% Order 
Cancellations (within 
50 µs) 
 

Daily average percentage of orders placed at a new price-
formation speed race that are cancelled within 50 µs 
 

ITCH 

% Order Imbalance  
 

At a daily aggregate level, % Order Imbalance is measured 
as the total unabsorbed on-close orders (obtained from the 
final NOII message of the day) as a percentage of the total 
on-close demand (across all tickers with a starting order 
imbalance as of the first NOII message at 3:50:00 PM) 
 
At a ticker-day level, % Order Imbalance is measured as the 
individual ticker’s unabsorbed on-close orders (obtained 
from the NOII message of the day) as a percentage of its 
total on-close demand. 

ITCH 

 
  



 

 53 

Appendix A2: Evidence of Continued Technological Disparity 
 
The following figure is an excerpt from a 2016 CSPi marketing brochure for the CSPi ARC Series E-
Class network adapter, originally accessed from their website on <http://www.cspi.com/wp-
content/uploads/2016/06/Tick-to-Trade-Latency_FINAL-2.pdf>. 
 

 

http://www.cspi.com/wp-content/uploads/2016/06/Tick-to-Trade-Latency_FINAL-2.pdf
http://www.cspi.com/wp-content/uploads/2016/06/Tick-to-Trade-Latency_FINAL-2.pdf
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